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Abstract

We present QSim, a program for simulation of NMR experiments. Pulse sequences are implemented and analyzed
in QSim using a mouse driven interface. QSim can handle almost any modern NMR experiment, using multiple
channels, shaped pulses, mixing, decoupling, phase-cycling and pulsed field gradients. Any number of spins with
any spin quantum number can, in theory, be used in simulations. Relaxation is accounted for during all steps of
pulse sequences and relaxation interference effects are supported. Chemical kinetics between any numbers of states
can be simulated. Both classical and quantum mechanical calculations can be performed. The result of a simulation
can be presented either as magnetization as a function of time or as a processed spectrum.

Introduction

It is becoming increasingly difficult to write and un-
derstand modern NMR pulse sequences due to the
utilization of complicated physical effects, examples
include the TROSY (Pervushin et al., 1997) effect and
the study of chemical dynamics using spin-lock exper-
iments (Deverell et al., 1970; Akke and Palmer, 1996).
Helpful tools such as the product operator formalism
(Sørensen et al., 1983; van de Ven and Hilbers, 1983;
Güntert et al., 1993) fails to completely describe these
modern experiments. It is thus becoming increasingly
evident that new tools are required to calculate the res-
ults of the most complicated pulse sequences without
unnecessary simplifications and approximations.

Quite a few software packages for simulation
of NMR experiments have previously been presen-
ted, such as SPINX (Widmer and Wüthrich, 1986),
SMART (Studer, 1988), GAMMA (Smith et al.,
1994a), SIMPLTN (Allman et al., 1996), ‘The Virtual
NMR Spectrometer’ (Nicholas et al., 2000), PJNMR
(Letourneau et al., 2003) and BlochLib (Blanton,
2003). We present QSim, which has the ambition to
both be easy to use and to accurately simulate almost
all kinds of modern liquid state NMR experiments.

QSim is written for PC’s running Microsoft Win-
dows and has a graphical user interface (GUI) similar
to other Windows programs. Simulations in QSim are
set up by graphically constructing a pulse sequence
and after that assigning variables and simulation para-
meters. Spin systems can either be imported from a
standard set or constructed directly in QSim. The res-
ult of the simulation can either be represented directly
as a spectrum within QSim or exported in a text format
suitable for further analysis in Matlab (Moler, 2002).

The computational part of QSim is named HME
and available as source code for more advanced users.
HME is a set of C++ classes and functions for simu-
lating NMR experiments. HME performs simulations
on any number of spins with any spin quantum num-
bers. It performs calculations using quantum mechan-
ics or optionally, for spin quantum numbers S ≤ 1,
classical mechanics. It handles first order equilibrium
chemical kinetics with any number of states. It can cal-
culate relaxation rates using chemical shift anisotropy,
dipole-dipole and quadrupolar relaxation mechanisms
in any combination, i.e., including all possible in-
terference effects. The motions of the spins in the
spin system are described by individual model free
spectral density functions (Lipari and Szabo, 1982a,
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1982b). The spectral density function is implemen-
ted as a complex function and the software is thus
able to calculate the dynamic frequency shifts of quad-
rupolar nuclei (Werbelow and London, 1996). Re-
laxation and chemical exchange are always included
in all parts of the simulation since the homogenous
master equation is used for quantum mechanical simu-
lations (Jeener, 1982; Levitt and Di Bari, 1992, 1994;
Smith et al., 1994b; Levante and Ernst, 1995; Al-
lard et al., 1998) and homogenous versions of the
Bloch (1946), Solomon (1955) and McConnell (1958)
equations are used for classical mechanical simula-
tions (Allard et al., 1997; Helgstrand et al., 2000).
HME contains support for quantum mechanical sim-
ulations of partially oriented systems using residual
dipolar and quadrupolar coupling constants. A method
for calculating the effect of pulsed field gradients in
the z-direction is implemented (Allard et al., 1998).
Decoupling sequences are simulated either as pulses
or, more efficiently, as effective Liouvillians (Levitt
and Di Bari, 1992, 1994; Allard et al., 1998).

Theory

All simulations in QSim/HME are performed in the
superspace (Liouville space) (Ernst et al., 1987;
Jeener, 1982). Operators, such as the Hamiltonian, are
described by vectors and superoperators, such as the
relaxation superoperator, are described by matrices in
the superspace. It is necessary to work in superspace to
be able to account for relaxation during calculations.
In the absence of relaxation the simulations can be
performed in the Hilbert space, with smaller matrices
and faster calculations. Simulations in Hilbert space
are not used in QSim/HME.

Calculations in superspace are performed with a
complete set of basis operators. We have chosen
the Cartesian product operators extended for spin
quantum numbers larger than S = 1/2 (Allard and
Härd, 2001). This basis set has several advantages
over competing sets of basis operators. One advant-
age is that most NMR users are familiar with the
Cartesian product operators. The flow of magnet-
ization/coherence through a pulse sequence can be
followed as signed quantities of Cartesian product op-
erators in QSim/HME. The other main advantage with
this particular set of basis operators is that all phys-
ically relevant spinoperators and superoperators are
described by real vectors and matrices (Allard and
Härd, 2001). Using any other set of basis operators

the matrices become complex and calculations will be
slower.

The Liouville-von Neuman system of equations,
i.e. the master equation, must be solved in order to
calculate the dynamics of a quantum mechanical sys-
tem (Abragam, 1961; Ernst et al., 1987; Goldman,
1988). In the presence of relaxation the master equa-
tion is inhomogeneous, complicating its solution. It
has been shown that the master equation can be rewrit-
ten in a homogenous form without any approximations
(Jeener, 1982; Levitt and Di Bari, 1992, 1994; Smith
et al., 1994b; Levante and Ernst, 1995). QSim/HME
uses the homogenous form of the master equation for
all quantum mechanical calculations and the corres-
ponding homogenous equations for classic mechanical
calculations (Allard et al., 1997; Helgstrand et al.,
2000).

The use of the homogenous master equations has
a very nice property (Smith et al., 1994b), all steps
in a pulse sequence, such as pulses or delays, can
be described by a matrix. A single matrix can thus
describe the combined effect of a sequence of pulses
and delays, simply by multiplying the time ordered
matrices describing the individual elements. QSim
finds, calculates and stores these matrices once and
uses them repeatedly in order to make simulations
faster.

The size of the matrices used in the calculations
is dependent on the number of spins, their quantum
numbers, the size of the matrix describing kinetics
and the choice of classical or quantum mechanical cal-
culations. The number of quantum mechanical basis
operators for a single spin with spin quantum number
S is (2S + 1)2. For larger spin systems these numbers
are multiplied together. For 4 spin S = 1/2 nuclei, the
size of the matrices is ((2*1/2 + 1)2)4 by ((2*1/2 + 1)2)4

(= 256 by 256) elements. When performing classical
mechanical simulation on k spins the size of the mat-
rix is 3*k + 1 by 3*k + 1 elements. A classical
mechanical simulation on 85 spins is thus similar in
execution time to a quantum mechanical simulation
on 4 spins with spin quantum numbers S = 1/2. If
chemical exchange is simulated the final matrix size is
even larger. If the number of kinetic states is m and the
size of the original matrix is n by n elements, the size
of the final matrix is (n − 1)*m + 1 by (n − 1)*m + 1
elements. It is thus, in practice, impossible to simulate
spin systems larger than 4 to 5 spins, with quantum
numbers S = 1/2, using quantum mechanics due to
the exponentially increasing size of the matrices used
during simulations.
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QSim simulates relaxation during all parts of
a pulse sequence, i.e., both during delays and
pulses. The relaxation mechanisms implemented in
QSim/HME are dipole-dipole relaxation, relaxation
due to anisotropy of shielding and quadrupolar re-
laxation (Abragam, 1961). All interaction tensors are
assumed axially symmetric. QSim/HME can calculate
all possible interference effects between the different
relaxation mechanisms.

The input required by QSim/HME are pair-wise
distances, the shielding constants for the parallel and
perpendicular direction of the shielding tensor and
the nuclear quadrupolar coupling constant for relax-
ation due to dipole-dipole interactions, anisotropy
of shielding and quadrupolar relaxation, respectively.
The angle between the unique axes of the interaction
tensors must also be supplied in case of interference
relaxation.

The dynamics in the spin system is described by
the Lipari–Szabo approach (Lipari and Szabo, 1982a,
1982b). All interactions causing relaxation are de-
scribed by an individual rotational correlation time,
a correlation time of internal motions, and an order
parameter squared.

The homogeneous master equation makes it pos-
sible to formulate a numerical effective Liouvillian
(Allard et al., 1998), similar to the average Liouvil-
lian (Levitt and Di Bari, 1992, 1994; Ghose, 2000).
Each segment of a pulse sequence is described by a
matrix which is the exponent of −L*�t, where L is
the Liouvillan and �t the time of the segment. These
matrices can be multiplied together in order to de-
scribe the effect of a larger pulse sequence with a
single matrix. If the logarithm of this single matrix is
taken, and then divided with −1 times the total time
of the pulse sequence, the effective Liouvillian is ob-
tained. If, for instance, the effective Liouvillian of a
decoupling sequence is calculated, it would be expec-
ted that the matrix elements in the effective Liouvillian
corresponding to scalar couplings would be close to
zero, while all other matrix elements would be close
to the Liouvillan for a delay.

It should be noted that the numerical effective Li-
ouvillian approach has certain limitations. Resonance
lines that evolve more than π radians during the total
time of the pulse sequence will be folded and will
appear at unexpected positions. The total time over
which an effective Liouvillian is calculated should be
kept short compared to the inverse of the largest in-
teraction of interest, or more accurately eigenvalue, in
order to avoid such problems.

We have implemented pulsed field gradients ac-
cording to a previously discussed method (Allard
et al., 1998). The effect of a pulsed field gradient is
a rotation around the z-axis, identical to the effect of
a chemical shift. When the PFG is applied in a pulse
sequence a term proportional to the PFG field strength
and the magnetogyric ratio is added to all chemical
shift terms. Only a single value of z can be used at
a time in the numerical calculations, corresponding
to a single slice in the sample tube. The calculations
are therefore repeated with linearly spaced values of
z and the normalized results are added together. In
this way integration over the height of the sample is
performed. The number of slices required is discussed
by Meresi et al. (1999). Successful implementation
of pulsed field gradients requires that desired mag-
netizations have the same phase at the beginning of
the acquisition and are added constructively while un-
wanted magnetizations have different phases and are
added destructively.

Spin Hamiltonian

The type of interaction Hamiltonians used in the simu-
lations are important when distinction between homo-
nuclear and heteronuclear scalar couplings or residual
dipolar couplings must be made.

The multiple rotating frame spin Hamiltonian is
assumed and used in all calculations. The Zeeman
Hamiltonian, H , is given by (Ernst et al., 1987)

H =
∑

i

�iIiz, (1)

with

2πνi = �i = ω0 − ωRF , (2)

where ν is the chemical shift offset frequency in s−1,
� is the chemical shift offset frequency in rad/s, ω0
is the resonance frequency in rad/s and ωRF is the fre-
quency of the RF field in rad/s. The rotating frame spin
Hamiltonian is

H =
∑

πJkl2
(
IkxIlx + IkyIly + IkzIlz

)
, (3)

for homonuclear scalar interactions and

H =
∑

πJkl2IkzSlz, (4)

for heteronuclear scalar interactions, where Jkl is the
scalar coupling constant between spin k and l in Hz.
The spin Hamiltonian in the rotating frame for the
applied RF field is

H =
∑(

ωxIx + ωyIy

)
, (5)
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where ωx and ωy are the RF magnetic field compon-
ents along the x and y axes in rad/s with

ωx = −γB1 cos (φ) ,

ωy = −γB1 sin (φ) ,
(6)

where γB1 is the magnetogyric ratio times the strength
of the RF field and φ is the phase of the RF field.

In partially oriented systems, i.e., non isotropic li-
quids, a small fraction of the quadrupolar and dipolar
interactions remain active due to incomplete averaging
(Emsley and Lindon, 1975; Canet, 1996). The spin
Hamiltonian, H , for spin S > 1/2 with nuclear quadru-
polar coupling and an axially symmetric electric field
gradient tensor is

H = πνQ

(
S2

z − 1

3
S2

)
, (7)

where νQ is the quadrupolar splitting. The spin
Hamiltonian for residual dipolar coupling in noniso-
tropic liquids is

H =
∑

πDkl2

(
IkzIlz − 1

2

(
IkxIlx + IkyIly

))
, (8)

for homonuclear interactions, and

H =
∑

πDkl2IkzSlz, (9)

for heteronuclear interactions, where Dkl is the resid-
ual dipolar coupling between spin k and l in Hz. Both
residual coupling terms, νQ and Dkl, are the couplings
observed in spectra, without the factor 2 often used.

QSim

QSim is a simulation program with a graphical user
interface (GUI) as shown in Figure 1. QSim consists of
four integrated parts: pulse sequence construction and
compilation, spin system creation, simulation using
HME, and processing. QSim is written in C++ and
utilizes Microsoft Foundation Classes (MFC) for com-
mand routing and GUI. The different parts of QSim
will now be described.

Sequence construction and compilation

The first step in simulating a pulse sequence is to
design the pulse sequence. The pulse sequence design
in QSim is done graphically. Pulse sequence design
includes adding channels, adding pulse sequence ele-
ments to channels and assignment of variables to pulse
sequence elements.

Each channel in the pulse sequence is assigned a
specific nucleus, except for the optional gradient chan-
nel. Pulse sequence elements are added to the channel
using the mouse in a ‘point and click’ manner. Avail-
able elements are hard pulses, shaped pulses, delays
and decoupling or mixing sequences. Only pulses and
delays are allowed in the gradient channel. A vertical
line, named sim-marker, is used to indicate points sim-
ultaneous in the pulse sequence. When a pulse element
or a sim-marker is added the appearance of the pulse
sequence is adjusted accordingly.

Pulse elements can be assigned a ‘watch’. At the
watch the magnetization (i.e. the magnitude of all
Cartesian product operators) is calculated and stored
to a file during the simulation.

When the pulse sequence is defined variables must
be assigned to the pulse sequence elements. Variables
are symbolic and a single variable can be used for mul-
tiple elements. It is, for example, convenient to use a
variable named x for phase zero throughout the en-
tire pulse sequence. The only pulse element for which
a variable does not need to be assigned is the delay.
Delays without an assigned variable are adjusted in
length depending on the length of other elements and
the location of sim-markers.

After adding all variables they must be set to nu-
merical values. Depending on type of variable they can
be static, cyclic, super cyclic or incremental. Static
variables are constant throughout the simulation and
cyclic variables vary with transient number. Super cyc-
lic variables vary with a super cycle being a set of
transients stored separately during acquisition. The 90
degree phase shift for quadrature detection in the in-
direct dimension using the States scheme(States et al.,
1982) is an example of a variable that should be su-
per cyclic. Incremental variables are mostly used for
delays involving evolution in indirect dimensions, but
could also be used for delays in relaxation experi-
ments. After assigning numerical values to the pulse
sequence the pulse sequence can be compiled.

Compilation of pulse sequences is automatically
performed upon start of simulations. During compil-
ation the program checks for inconsistencies, and if
inconsistencies are found aborts the simulation and in-
dicates positions with errors. If the compilation runs
successfully the graphical pulse sequence is converted
into a list of events with time marks. These events are
later on assigned propagators and used in simulations.

Pulse sequences can be saved and loaded separ-
ately from other parameters in QSim.
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Figure 1. An overview of QSim showing the main window and the windows for pulse sequence construction, spin system setup, simulation
and viewing of spectra. The experiment viewed is an HSQC-spectrum without decoupling in either of the two dimensions. The offset chemical
shifts were 200 Hz for both proton and nitrogen in one state, which is in exchange with another state with offset chemical shifts of −200 Hz for
both proton and nitrogen. The exchange rate constants were 10 s−1 for both the forward and the backward reaction. 256 complex data points
with a dwell time of 0.001 s were simulated in both the direct and indirect dimensions. A cosine apodization function without zero-filling was
used in both dimensions. The magnetic field strength was set to 18.8 T (800 MHz for 1H). The scalar coupling between the nuclei was set to
92 Hz and the distance set to 1.02 Å. The dynamics responsible for relaxation was set to τm = 25 ns, τe = 50 ps and S2 = 0.8 (Lipari and
Szabo, 1982a, 1982b) for all interactions. The proton and nitrogen was relaxed by mutual dipole-dipole interactions and by CSA interactions
with the external field using (σ‖ − σ⊥) = −14 ppm and −160 ppm respectively. The angle between the unique axis of the CSA tensor and the

internuclear vector between proton and nitrogen was set 0◦ and 22◦ for the proton and nitrogen respectively. The RF-field strength for both 1H
and 15N were set to 50 kHz. The delay τ was set to 2.72 ms.

Spin system creation

Spin systems contain any number of spins with any
spin quantum numbers and magnetogyric ratios. The
minimum set of parameters for a spin system is the
number of spins and the name of their respective
isotope. If an isotope name is recognized, the cor-
responding spin quantum number and magnetogyric
ratio is automatically set. Chemical shifts and scalar
coupling constants can be modified. Finally, residual

dipolar and residual quadrupolar coupling constants
can be set to values different from zero in order to
simulate the effect of partially oriented systems.

Parameters that have to do with relaxation include
information about dynamics in the form of the model-
free parameters τm, τe and S2 (Lipari and Szabo,
1982a, 1982b). Each interaction has its own separ-
ate set of model free parameters of dynamics. The
coupling constants in relaxation such as distances,
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Figure 2. An overview of a HME C++ program. (A) Variables are defined and simulation parameters are set. (B) The spin system is set up and
the function quantummechanics() is called. By calling this function a set of basis operators is created for the spin system. (C) The spinoperators
and superoperators are constructed. (D) The actual simulation is performed and (E) the FID is processed and exported to a file. The program is
further described in the text.

anisotropy of shielding and quadrupolar coupling con-
stants can be modified. Parameters for relaxation
interference effects can also be supplied.

The size and elements of a matrix of kinetic rate
constants can be set in order to simulate chemical ex-
change (Helgstrand et al., 2000). It is the responsibility
of the user to supply a physically realistic matrix of
rates, see Supporting Information.

Spin systems in QSim can be exported and im-
ported. It is thus possible to set up a library of spin
systems for later use.

Simulation

When the pulse sequence is set up and a spin sys-
tem is defined, the simulation can proceed. However,
simulation parameters must be set before the actual
simulation can start. It is possible to set magnetic field
strength, number of transients, number of points to
acquire and the corresponding dwell time. The num-
ber of super cycles is set to 1 for 1D spectra and to 2
for States and echo/anti-echo 2D spectra. The number
of points in the indirectly detected dimensions is also
set. A choice between classical and quantum mechan-
ical simulation must be made. It must also be decided
if complete simulations of decoupling and mixing
sequences should be performed, or if time efficient
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simulations using an effective Liouvillian should be
used instead. It is also possible to use a start magnetiz-
ation. The start magnetization could either be a user
defined magnetization or the residual magnetization
from the previous transient. If watches are assigned
in the pulse sequence, there is an option to calculate
these and store the result in a separate file.

The simulation is then started and a basis set con-
structed, relaxation rates calculated and Liouvillians
constructed. Finally propagators are calculated for all
events in the compiled pulse sequence. Propagators
are then multiplied according to transient number,
super cycle and increment number, to create a free
induction decay (FID).

Processing

Free induction decays (FIDs) are available for pro-
cessing after the simulation has finished. The pro-
cessing modes supported are 1D, stacked 1D, 2D
magnitude, 2D States et al. (1982), 2D TPPI (Drobny
et al., 1978) and 2D echo/anti-echo (Kay et al., 1992).
Standard window functions such as the exponential,
gaussian, sinebell and squared sinebell functions can
be multiplied to the free induction decays. The final
size of the spectrum can be set, thus obtaining zero-
filling. Zero and first order phasing parameters are
available.

A flag can be set so that both a complex conjug-
ate of the free induction decay is performed before
Fourier transformation and that the spectrum is plot-
ted with the frequency increasing from right to left.
This is according to the recommended procedure to
present spectra of nuclei with negative magnetogyric
ratios (Levitt, 1997).

Finally, parameters for contouring the 2D spectrum
such as the number of levels and the level multiplier
can be adjusted. Spectra are viewed on screen and it
is possible to zoom and scroll. Spectra can also be
printed. The calculated spectrum can be exported in
a text-format suitable for manipulations using Matlab.

HME

The NMR simulation software package HME is a
stand alone part of QSim and is written in C++
(Stroustrup, 2000). The source code of HME is avail-
able for download and it is possible to use HME
directly without QSim. HME is more flexible than

QSim, it could for example be used for optimiza-
tions, but demands more of computer skills from the
user. It is also more complicated to set up large pulse
sequences with many pulses and/or shaped pulses in
HME than in QSim.

To create a simulation using HME, a C++ pro-
gram must be written using the classes and functions
defined in HME. This program is then compiled and
run. Compilers tested with HME are Visual Studio
.NET and gcc (3.2). Results from simulations are
usually stored to a text file and then analyzed using
software such as Microsoft Excel, Matlab or Gnuplot
(Williams et al., 1999).

Programs constructed with HME typically have
different sections. To show the sections necessary for
a simulation using HME a small example program is
presented (Figure 2). The example is a simple 90 de-
gree y-pulse followed by acquisition. The simulated
spin system is a system of two coupled 1H spins.

In the first section of the program (marked section
A), variables are defined and simulation parameters
set. These parameters are used in other parts of the
program.

In the next section (section B) the spin system is
set up. In this case a spin system with two spins is
defined. An isotope for the respective spin is set, this
isotope is then recognized by HME and parameters in
the spin system set accordingly. Chemical shifts are
set in Hertz for the respective spin. After the spins
have been defined interactions between them are set
up. In this example the distance between the nuclei
is set to 1.09 Å and the scalar coupling set to 50 Hz.
Next the parameters for the dynamics are given. After
all parameters are set the function quantummechan-
ics () is called. By calling this function a basis set
for the spin system is created. If classical mechanics
should be used for simulation, the classicalmechanics
() function is called instead.

In section C the relaxation rates are calculated
and Hamiltonians and Liouvillians constructed. In this
example only dipole-dipole and CSA relaxation are
included. Next the equilibrium density operator is
calculated and stored. The static Hamiltonian is con-
structed from the isotropic part and the part including
effects due to partial orientation. From the Hamilto-
nian the Liouvillian is constructed. After the relaxation
superoperator has been homogenized it is added to
the static Liouvillian and the result is the Liouvil-
lian describing the system in absence of pulses and
gradients.
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In section D the actual simulation is performed.
The propagator of a 90◦ pulse is calculated and mul-
tiplied to the equilibrium density operator. The result
is fed into the function for FID calculations and the
result stored.

In the last section (E) the FID is processed and
exported to file. The file can then be plotted using for
example Gnuplot (Williams et al., 1999).

Example simulations

To illustrate the capabilities of QSim and HME we
present a few example simulations.

The first example (Figure 1) is a coupled HSQC
experiment for a large protein at high field: The spin
system is a 1H-15N moiety and it experiences two
state chemical exchange. This example illustrates the
relaxation interference effect between dipole-dipole
relaxation and CSA relaxation (Goldman, 1984), the
TROSY effect (Pervushin et al., 1997). It also exem-
plifies the use of chemical exchange in simulations.
The simulation time for the 2D spectrum was 6 s on a
2.4 GHz Intel 4 PC with 512 MB of memory.

The second example (Figure 3) shows a simulation
of a 2H-13C spin system and illustrates the dynamic
frequency shift obtained due to the relaxation inter-
ference between the dipole-dipole relaxation and the
quadrupolar relaxation (Grzesiek and Bax, 1994). The
simulation time for the 1D spectrum was 4 s on a 2.4
GHz Intel 4 PC with 512 MB of memory.

The third example (Figure 4) shows the result of
a pulse sequence for measurement of carbonyl 13C
transverse relaxation rates (Mulder and Akke, 2003).
The example illustrates the use of complicated pulse
sequences in QSim, including gradients, shaped pulses
and decoupling sequences. The spin system used is a
1H-15N-13CO moiety in a protein backbone. The sim-
ulation time for the full relaxation decay with 60 points
(Figure 4b) was 8 h on a 3 GHz Intel 4 PC with 1 GB
of memory.

Conclusions

Simulations of NMR experiments have several pos-
sible uses. It is expensive to operate NMR instruments
and simulations can therefore be very important in
the learning and teaching of NMR. Experienced NMR
users can use computer simulations when they de-
velop and test new pulse sequences. It has been shown

Figure 3. An experiment showing the interference between dipolar
and quadrupolar interactions (Grzesiek and Bax, 1994). The pulse
sequence simulated was a 90 degree y-pulse on 13C followed by
acquisition. The 13C RF-field strength was set to 25 kHz. The mag-
netic field was set to 14.09 T. The spin system contains one 2H and
one 13C with a scalar coupling of 20 Hz and a distance of 1.09 Å.
The chemical shifts were set to 10 Hz and 0 Hz for the deuteron and
the carbon, respectively. The quadrupolar coupling constant for 2H
was set to 170 kHz. The dynamics responsible for relaxation was set
to τm = 10 ns and S2 = 1.0 (Lipari and Szabo, 1982a, 1982b) for
all interactions. The deuteron and the carbon were relaxed by mu-
tual dipole-dipole interactions. The interference interaction between
quadrupolar relaxation and dipole-dipole relaxation was included.
The angle between the unique axis of the quadrupole tensor and the
internuclear vector between the deuteron and the carbon was set to
0◦. The spectrum was processed without apodization function.

that simulations can be useful in the analysis of ex-
perimental results concerning both the structure and
the dynamics of molecules. Finally, simulations of
NMR experiments are important in the numerical op-
timization of pulse sequence elements, such as mixing
sequences and shaped pulses.

QSim can simulate almost any liquid state NMR
experiment. It is easy to design and test pulse se-
quences using QSim. The program hides the complex-
ity of NMR theory from the inexperienced user. QSim
can with advantage be used for teaching and learn-
ing NMR as well as in the development and testing
of pulse sequences. The QSim executable is available
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Figure 4. An experiment for measurement of carbonyl 13C transverse relaxation rate (Mulder and Akke, 2003). The pulse sequence, as printed
from QSim, is shown in (a) and a relaxation decay in (b). The spin system simulated was a 1H-15N-13CO moiety in a protein backbone.
Chemical shifts were set to 100 Hz, 50 Hz and −75 Hz for the proton, nitrogen and carbon respectively. The distances were set to 0.98 Å
between 1H and 15N, 1.3 Å between 15N and 13C and 1.98 Å between 1H and 13C. The scalar couplings were set to 92 Hz between 1H
and 15N, 15 Hz between 15N and 13C and 0 Hz between 1H and 13C. The CSA for the 13C was set to (σ‖ − σ⊥) = 90 ppm. The dynamics

responsible for relaxation was set to τm = 5 ns, τe = 50 ps and S2 = 0.8 (Lipari and Szabo, 1982a, 1982b) for all interactions. Simulations
were performed at 14.1 T. Adiabatic ramps were simulated using shaped pulses and were 4 ms long. The pulse sequence is slightly modified
from Figure 2b in the paper by Mulder and Akke (2003). Water flip-back pulses and Cα pulses have been removed, since water and Cα were
not included in the simulation. Parameters and phase cycles used were otherwise the same as in the original pulse sequence. 60 points in a
relaxation decay were simulated using the entire 8 step phase cycle and 100 slices for gradients. The entire simulation included 60 * 8 * 100 =
4800 full simulations of the pulse sequence, which took 8 h on a 3 GHz Pentium 4 PC with 1 GB of memory.
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for download at www.bpc.lu.se/QSim, together with a
manual and example simulations.

HME is a C++ toolkit and its use requires basic
knowledge of C++ programming. HME is useful for
numerical optimization of pulse sequence elements.
Parameters can be optimized if a target function can
be formulated. HME can also be used when evaluating
experimental data. In this case a target function is used
to compare experimental data with simulated data. It
is then possible to extract interesting experimental data
such as rate constants. The HME source code is avail-
able for download at www.bpc.lu.se/QSim, together
with a manual and example programs.
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